Positive Part of Multiple of Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a set.

Let $f : X \to \overline \R$ be an extended real-valued function.

Let $\alpha$ be a real number.


Then:

$\ds \paren {\alpha f}^+ = \begin{cases}\alpha f^+ & \alpha \ge 0 \\ -\alpha f^- & \alpha < 0\end{cases}$

where:

$\paren {\alpha f}^+$ and $f^+$ are the positive parts of $\alpha f$ and $f$ respectively
$f^-$ is the negative part of $f$.


Proof

Let $x \in X$.

First take $\alpha \ge 0$.

Suppose that $\map f x \ge 0$.

Then $\alpha \map f x \ge 0$.

So:

$\max \set {\alpha \map f x, 0} = \alpha \map f x$

and:

$\max \set {\map f x, 0} = \map f x$

So by the definition of the positive part and negative part, we have:

$\map {\paren {\alpha f}^+} x = \alpha \map f x$

and:

$\map {f^+} x = \map f x$

So:

$\map {\paren {\alpha f}^+} x = \alpha \map {f^+} x$

if $\map f x \ge 0$.

Now suppose that $\map f x < 0$.

Then $\alpha \map f x < 0$.

So:

$\max \set {\map f x, 0} = 0$

and:

$\max \set {\alpha \map f x, 0} = 0$

So by the definition of the positive part and negative part, we have:

$\map {\paren {\alpha f}^+} x = 0$

and:

$\map {f^+} x = 0$

So:

$\map {\paren {\alpha f}^+} x = \alpha \map {f^+} x$

if $\map f x < 0$.

So:

$\paren {\alpha f}^+ = \alpha f^+$

if $\alpha \ge 0$.


Now take $\alpha < 0$.

Suppose that $\map f x \ge 0$.

Then $\alpha \map f x \le 0$.

So:

$\max \set {\alpha \map f x, 0} = 0$

and:

$-\min \set {\map f x, 0} = 0$

So by the definition of the positive part and negative part, we have:

$\map {\paren {\alpha f}^+} x = 0$

and:

$\map {f^-} x = 0$

So:

$\map {\paren {\alpha f}^+} x = -\alpha \map {f^-} x$

if $\map f x \ge 0$.

Now suppose that $\map f x < 0$.

Then $\alpha \map f x > 0$.

So:

$\max \set {\alpha \map f x, 0} = \alpha \map f x$

and:

$-\min \set {\map f x, 0} = -\map f x$

So:

$\map {\paren {\alpha f}^+} x = \alpha \map f x$

and:

$\map {f^-} x = -\map f x$

So:

$\map {\paren {\alpha f}^+} x = -\alpha \map {f^-} x$

if $\map f x < 0$.

So:

$\paren {\alpha f}^+ = -\alpha f^-$

if $\alpha < 0$.

$\blacksquare$