Positive Part of Vertical Section of Function is Vertical Section of Positive Part

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ and $Y$ be sets.

Let $f : X \times Y \to \overline \R$ be a function.

Let $x \in X$.


Then:

$\paren {f_x}^+ = \paren {f^+}_x$

where:

$f_x$ denotes the $x$-vertical function of $f$
$f^+$ denotes the positive part of $f$.


Proof

Fix $x \in X$.

Then, we have, for each $y \in Y$:

\(\ds \map {\paren {f^+}_x} y\) \(=\) \(\ds \map {f^+} {x, y}\)
\(\ds \) \(=\) \(\ds \max \set {0, \map f {x, y} }\) Definition of Positive Part
\(\ds \) \(=\) \(\ds \max \set {0, \map {f_x} y}\) Definition of Vertical Section of Function
\(\ds \) \(=\) \(\ds \map {\paren {f_x}^+} y\) Definition of Positive Part

$\blacksquare$