Power Function Preserves Ordering in Ordered Group/Corollary/Proof 1

From ProofWiki
Jump to navigation Jump to search

Corollary to Power Function Preserves Ordering in Ordered Group

Let $\struct {G, \circ, \preccurlyeq}$ be an ordered group with identity $e$.

Let $\prec$ be the reflexive reduction of $\preceq$.

Let $x \in G$.

Let $n \in \N_{>0}$ be a strictly positive integer.


Then the following hold:

\(\ds \forall x \in S: \, \) \(\ds x \preccurlyeq e\) \(\implies\) \(\ds x^n \preccurlyeq e\)
\(\ds e \preccurlyeq x\) \(\implies\) \(\ds e \preccurlyeq x^n\)
\(\ds x \prec e\) \(\implies\) \(\ds x^n \prec e\)
\(\ds e \prec x\) \(\implies\) \(\ds e \prec x^n\)


Proof

By Power Function Preserves Ordering in Ordered Group:

\(\ds \forall x \in S: \, \) \(\ds x \preccurlyeq e\) \(\implies\) \(\ds x^n \preccurlyeq e^n\)
\(\ds e \preccurlyeq x\) \(\implies\) \(\ds e^n \preccurlyeq x^n\)
\(\ds x \prec e\) \(\implies\) \(\ds x^n \prec e^n\)
\(\ds e \prec x\) \(\implies\) \(\ds e^n \prec x^n\)


By Identity Element is Idempotent, $e$ is idempotent with respect to $\circ$.

Therefore by the definition of an idempotent element, $e^n = e$.

Thus the theorem holds.

$\blacksquare$