Power Reduction Formulas/Hyperbolic Cosine to 4th/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cosh^4 x = \dfrac {3 + 4 \cosh 2 x + \cosh 4 x} 8$


Proof

\(\ds \cosh 4 x\) \(=\) \(\ds \paren {\cosh^2 x}^2\)
\(\ds \) \(=\) \(\ds \paren {\frac {\cosh 2 x + 1} 2}^2\) Square of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac {\cosh^2 2 x + 2 \cosh 2 x + 1} 4\) multiplying out
\(\ds \) \(=\) \(\ds \frac {\frac {\cosh 4 x + 1} 2 + 2 \cosh 2 x + 1} 4\) Square of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac {\cosh 4 x + 1 + 4 \cosh 2 x + 2} 8\) multiplying top and bottom by $2$
\(\ds \) \(=\) \(\ds \frac {3 + 4 \cosh 2 x + \cosh 4 x} 8\) rearrangement

$\blacksquare$