Power Reduction Formulas/Hyperbolic Cosine to 4th/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cosh^4 x = \dfrac {3 + 4 \cosh 2 x + \cosh 4 x} 8$


Proof

\(\ds \cosh^4 x\) \(=\) \(\ds \frac 1 {2^4}\left(e^{x} + e^{-x}\right)^4\) Definition of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac 1 {16} \left({e^{4 x} + 4 e^{2 x} + 6 e^{0 x} + 4 e^{-2 x} + e^{-4 x} }\right)\) Binomial Theorem
\(\ds \) \(=\) \(\ds \frac 1 8 \left({\frac{e^{4 x} + e^{-4 x} } 2}\right) + \frac 4 8 \left({\frac{e^{2 x} + e^{-2 x} } 2 }\right) + \frac 6 {16}\)
\(\ds \) \(=\) \(\ds \frac {3 + 4 \cosh 2 x + \cosh 4 x} 8\) Definition of Hyperbolic Cosine

$\blacksquare$