Power Series Expansion for Reciprocal of Square of 1 + x/Corollary

From ProofWiki
Jump to navigation Jump to search

Corollary to Power Series Expansion for $\frac 1 {\paren {1 + x} }$

Let $x \in \R$ such that $-1 < x < 1$.

Then:

\(\ds \dfrac 1 {\paren {1 - x}^2}\) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {k + 1} x^k\)
\(\ds \) \(=\) \(\ds 1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + \cdots\)


Proof

\(\ds \dfrac 1 {\paren {1 - x}^2}\) \(=\) \(\ds \dfrac 1 {\paren {1 + \paren {-x} }^2}\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {k + 1} \paren {-x}^k\) Power Series Expansion for $\dfrac 1 {\paren {1 + x}^2}$
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {-1}^k \paren {k + 1} x^k\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^{2 k} \paren {k + 1} x^k\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {k + 1} x^k\)

$\blacksquare$


Sources