Power Series Expansion for Square Root of 1 - x

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ such that $-1 < x \le 1$.

Then:

\(\ds \sqrt {1 - x}\) \(=\) \(\ds 1 - \sum_{k \mathop = 1}^\infty \frac {\paren {2 \paren {k - 1} }!} {2^{2 k - 1} k! \paren {k - 1}!} x^k\)
\(\ds \) \(=\) \(\ds 1 - \frac 1 2 x - \frac 1 {2 \times 4} x^2 - \frac {1 \times 3} {2 \times 4 \times 6} x^3 - \cdots\)


Proof

\(\ds \sqrt {1 + x}\) \(=\) \(\ds 1 + \frac 1 2 x - \frac 1 {2 \times 4} x^2 + \frac {1 \times 3} {2 \times 4 \times 6} x^3 - \cdots\) Power Series Expansion for $\sqrt {1 + x}$
\(\ds \leadsto \ \ \) \(\ds \sqrt {1 - x}\) \(=\) \(\ds 1 + \frac 1 2 \paren {-x} - \frac 1 {2 \times 4} \paren {-x}^2 + \frac {1 \times 3} {2 \times 4 \times 6} \paren {-x}^3 - \cdots\) substituting $x \gets -x$
\(\ds \) \(=\) \(\ds 1 - \frac 1 2 x - \frac 1 {2 \times 4} x^2 - \frac {1 \times 3} {2 \times 4 \times 6} x^3 - \cdots\) simplifying

$\blacksquare$


Sources