Power Set is Closed under Intersection

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $\powerset S$ be the power set of $S$.


Then:

$\forall A, B \in \powerset S: A \cap B \in \powerset S$


Proof

Let $A, B \in \powerset S$.

Then by the definition of power set, $A \subseteq S$ and $B \subseteq S$.

From Intersection is Subset we have that $A \cap B \subseteq A$.

It follows from Subset Relation is Transitive that $A \cap B \subseteq S$.

Thus $A \cap B \in \powerset S$ and closure is proved.

$\blacksquare$


Also see


Sources