Power is Well-Defined/Rational

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R_{> 0}$ be a (strictly) positive real number.

Let $q$ be a rational number.


Then $x^q$ is well-defined.


Proof

Let $x \in \R_{>0}$ be fixed.

Let $q \in \Q \setminus \set 0$.

Let $\dfrac r s$ and $\dfrac t u$ be two representations of $q$.

That is, $r, s, t, u$ are non-zero integers.

We now show that:

$\dfrac r s = \dfrac t u \implies x^{r / s} = x^{t / u}$


So:

\(\ds \dfrac r s\) \(=\) \(\ds \dfrac t u\)
\(\ds \leadsto \ \ \) \(\ds r u\) \(=\) \(\ds t s\)
\(\ds \leadsto \ \ \) \(\ds x^{r u}\) \(=\) \(\ds x^{s t}\) Power is Well-Defined: Integer
\(\ds \leadsto \ \ \) \(\ds \paren {x^r}^u\) \(=\) \(\ds \paren {x^t}^s\) Product of Indices of Real Number: Integers
\(\ds \leadsto \ \ \) \(\ds \sqrt [u] {\paren {x^r}^u}\) \(=\) \(\ds \sqrt [u] {\paren {x^t}^s}\) Existence and Uniqueness of Positive Root of Positive Real Number
\(\ds \leadsto \ \ \) \(\ds x^r\) \(=\) \(\ds \sqrt [u] {\paren {x^t}^s}\) Definition of Root of Number
\(\ds \leadsto \ \ \) \(\ds \sqrt [s] {\paren {x^r} }\) \(=\) \(\ds \sqrt [s] {\sqrt [u] {\paren {x^t}^s} }\) Existence and Uniqueness of Positive Root of Positive Real Number
\(\ds \leadsto \ \ \) \(\ds \sqrt [s] {\paren {x^r} }\) \(=\) \(\ds \sqrt [u] {\sqrt [s] {\paren {x^t}^s} }\) Root is Commutative
\(\ds \leadsto \ \ \) \(\ds \sqrt [s] {\paren {x^r} }\) \(=\) \(\ds \sqrt [u] {\paren {x^t} }\) Definition of Root of Number
\(\ds \leadsto \ \ \) \(\ds x^{r / s}\) \(=\) \(\ds x^{t / u}\) Definition of Rational Power

Hence the result.

$\blacksquare$