Power of Complex Modulus equals Complex Modulus of Power
Theorem
Let $z \in \C$ be a complex number.
Let $\left\vert{z}\right\vert$ be the modulus of $z$.
Let $n \in \Z_{\ge 0}$ be a positive integer.
Then:
- $\left\vert{z^n}\right\vert = \left\vert{z}\right\vert^n$
Proof
The proof proceeds by induction.
For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the proposition:
- $\left\vert{z^n}\right\vert = \left\vert{z}\right\vert^n$
$P \left({0}\right)$ is the case:
\(\ds \left\vert{z^0}\right\vert\) | \(=\) | \(\ds \left\vert{1}\right\vert\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left\vert{z}\right\vert^0\) |
Thus $P \left({0}\right)$ is seen to hold.
Basis for the Induction
$P \left({1}\right)$ is the case:
\(\ds \left\vert{z^1}\right\vert\) | \(=\) | \(\ds \left\vert{z}\right\vert\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left\vert{z}\right\vert^1\) |
Thus $P \left({1}\right)$ is seen to hold.
This is the basis for the induction.
Basis for the Induction
$P \left({2}\right)$ is the case:
- $\left\vert{z^2}\right\vert = \left\vert{z}\right\vert^2$
which is demonstrated in Square of Complex Modulus equals Complex Modulus of Square.
Thus $P \left({2}\right)$ is seen to hold.
This is the basis for the induction.
Induction Hypothesis
Now it needs to be shown that, if $P \left({k}\right)$ is true, where $k \ge 1$, then it logically follows that $P \left({k + 1}\right)$ is true.
So this is the induction hypothesis:
- $\left\vert{z^k}\right\vert = \left\vert{z}\right\vert^k$
from which it is to be shown that:
- $\left\vert{z^{k + 1} }\right\vert = \left\vert{z}\right\vert^{k + 1}$
Induction Step
This is the induction step:
\(\ds \left\vert{z^{k + 1} }\right\vert\) | \(=\) | \(\ds \left\vert{z^k \cdot z}\right\vert\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left\vert{z^k}\right\vert \cdot \left\vert{z}\right\vert\) | Complex Modulus of Product of Complex Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \left\vert{z}\right\vert^k \cdot \left\vert{z}\right\vert\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \left\vert{z}\right\vert^{k + 1}\) |
So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\forall n \in \ Z_{\ge 0}: \left\vert{z^n}\right\vert = \left\vert{z}\right\vert^n$
$\blacksquare$
Examples
Complex Modulus of $\paren {1 + i}^4$
- $\left\vert{\left({1 + i}\right)^4}\right\rvert = 4$
Complex Modulus of $\paren {2 - i}^6$
- $\cmod {\paren {2 - i}^6} = 125$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1.2$. The Algebraic Theory