Power of Complex Number minus 1/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.

Then:

$\ds \sum_{k \mathop = 0}^{n - 1} z^k = \prod_{k \mathop = 1}^{n - 1} \paren {z - \alpha^k}$

where $\alpha$ is a primitive complex $n$th root of unity.


Proof

\(\ds z^n - 1\) \(=\) \(\ds \prod_{k \mathop = 0}^{n - 1} \paren {z - \alpha^k}\)
\(\ds \leadsto \ \ \) \(\ds \frac {z^n - 1} {z - 1}\) \(=\) \(\ds \prod_{k \mathop = 1}^{n - 1} \paren {z - \alpha^k}\) as $\alpha^k = 1$ when $k = 0$
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 0}^{n - 1} z^k\) \(=\) \(\ds \prod_{k \mathop = 1}^{n - 1} \paren {z - \alpha^k}\) Sum of Geometric Sequence

$\blacksquare$


Sources