Power of Maximum is not Greater than Sum of Powers
Jump to navigation
Jump to search
Theorem
Let $a_1, a_2, \ldots, a_r$ be non-negative real numbers.
Let $n \in \Z_{>0}$ be a (strictly) positive integer.
Let $a = \max \set {a_1, a_2, \ldots, a_r}$.
Then:
- $a^n \le a_1^n + a_2^n + \cdots + a_r^n$
Proof
By definition of the $\max$ operation:
- $\exists k \in \set {1, 2, \ldots, r}: a_k = a$
Hence:
\(\ds a^n\) | \(=\) | \(\ds a_k^n\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds a_1^n + a_2^n + \cdots + a_k^n + \cdots + a_r^n\) |
Hence the result.
$\blacksquare$
Sources
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $1$: Review of some real analysis: Exercise $1.5: 11$