Power of Positive Real Number is Positive/Rational Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R_{>0}$ be a (strictly) positive real number.

Let $q \in \Q$ be a rational number.


Then:

$x^q > 0$

where $x^q$ denotes the $x$ to the power of $q$.


Proof

Let $q = \dfrac r s$, where $r \in \Z$, $s \in \Z \setminus \set 0$.

Then:

\(\ds x > 0\) \(\leadsto\) \(\ds x^r > 0\) Power of Positive Real Number is Positive: Integer
\(\ds \) \(\leadsto\) \(\ds \sqrt [s] {\paren {x^r} } > 0\) Existence of Positive Root of Positive Real Number
\(\ds \) \(\leadsto\) \(\ds x^{r / s}\) Definition of Rational Power

Hence the result.

$\blacksquare$