Powers of Infinite Order Element

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $G$ be a group whose identity is $e$.

Let $a \in G$ have infinite order in $G$.


Then:

$\forall m, n \in \Z: m \ne n \implies a^m \ne a^n$


Proof

Let $m, n \in \Z$.

Then:

\(\ds a^m\) \(=\) \(\ds a^n\)
\(\ds \leadsto \ \ \) \(\ds a^m \paren {a^n}^{-1}\) \(=\) \(\ds e\)
\(\, \ds \land \, \) \(\ds a^n \paren {a^m}^{-1}\) \(=\) \(\ds e\)
\(\ds \leadsto \ \ \) \(\ds a^{m - n}\) \(=\) \(\ds a^{n - m} = e\)
\(\ds \leadsto \ \ \) \(\ds a^{\size {m - n} }\) \(=\) \(\ds e\)
\(\ds \leadsto \ \ \) \(\ds \size {m - n}\) \(=\) \(\ds 0\) Definition of Infinite Order Element: there exists no $x \in \Z_{>0}$ such that $a^x = e$
\(\ds \leadsto \ \ \) \(\ds m\) \(=\) \(\ds n\)

The result follows from transposition.

$\blacksquare$


Sources