Preimage of Singleton

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR$ be a relation.

Let $\map {\RR^{-1} } t$ denote the preimage of $t$ under $\RR$.

Let $\RR^{-1} \sqbrk {\set t}$ denote the preimage of $\set t$ under $\RR$.


Then:

$\RR^{-1} \sqbrk {\set t} = \map {\RR^{-1} } t$


Proof

\(\ds \map {\RR^{-1} } t\) \(=\) \(\ds \set {s: \paren {s, t} \in \RR}\) Definition of Preimage of Element under Relation
\(\ds \) \(=\) \(\ds \set {s: \exists y: \paren {y = t \land \tuple {s, y} \in \RR} }\) Equality implies Substitution
\(\ds \) \(=\) \(\ds \set {s: \exists y \in \set t: \tuple {s, y} \in \RR}\) Definition of Singleton
\(\ds \) \(=\) \(\ds \RR^{-1} \sqbrk {\set t}\) Definition of Preimage of Subset under Relation

$\blacksquare$


Sources