Preordering of Products under Operation Compatible with Preordering

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be an algebraic structure.

Let $\precsim$ be a preordering on $S$.


Then $\precsim$ is compatible with $\circ$ if and only if:

$\forall x_1, x_2, y_1, y_2 \in S: x_1 \precsim x_2 \land y_1 \precsim y_2 \implies \paren {x_1 \circ y_1} \precsim \paren {x_2 \circ y_2}$


Proof

By definition, $\precsim$ is compatible with $\circ$ if and only if:

\(\ds \forall x, y, z \in S: \, \) \(\ds x \precsim y\) \(\implies\) \(\ds \paren {x \circ z} \precsim \paren {y \circ z}\)
\(\ds x \precsim y\) \(\implies\) \(\ds \paren {z \circ x} \precsim \paren {z \circ y}\)


Sufficient Condition

Let $\precsim$ be compatible with $\circ$.


Then for all $x_1, x_2, y_1, y_2 \in S$:

\(\ds x_1 \precsim x_2\) \(\implies\) \(\ds \paren {x_1 \circ y_1} \precsim \paren {x_2 \circ y_1}\) Definition of Relation Compatible with Operation
\(\ds y_1 \precsim y_2\) \(\implies\) \(\ds \paren {x_2 \circ y_1} \precsim \paren {x_2 \circ y_2}\) Definition of Relation Compatible with Operation


As $\precsim$ is a preordering it is by definition transitive.


Thus it follows that:

$x_1 \precsim x_2 \land y_1 \precsim y_2 \implies \paren {x_1 \circ y_1} \precsim \paren {x_2 \circ y_2}$

$\Box$


Necessary Condition

Let $\precsim$ fulfil the property that:

$\forall x_1, x_2, y_1, y_2 \in S: x_1 \precsim x_2 \land y_1 \precsim y_2 \implies \paren {x_1 \circ x_2} \precsim \paren {y_1 \circ y_2}$


As $\precsim$ is a preordering it is by definition reflexive.

That is:

$\forall z \in S: z \precsim z$


Make the substitutions:

\(\ds x_1\) \(\to\) \(\ds x\)
\(\ds x_2\) \(\to\) \(\ds y\)
\(\ds y_1\) \(\to\) \(\ds z\)
\(\ds y_2\) \(\to\) \(\ds z\)

It follows that:

$\forall x, y, z \in S: x \precsim y \implies \paren {x \circ z} \precsim \paren {y \circ z}$


Similarly, make the substitutions:

\(\ds x_1\) \(\to\) \(\ds z\)
\(\ds x_2\) \(\to\) \(\ds z\)
\(\ds y_1\) \(\to\) \(\ds x\)
\(\ds y_2\) \(\to\) \(\ds y\)

It follows that:

$\forall x, y, z \in S: x \precsim y \implies \paren {z \circ x} \precsim \paren {z \circ y}$


So for all $x, y, z \in S$, both conditions are fulfilled:

\(\ds x \precsim y\) \(\implies\) \(\ds \paren {x \circ z} \precsim \paren {y \circ z}\)
\(\ds x \precsim y\) \(\implies\) \(\ds \paren {z \circ x} \precsim \paren {z \circ y}\)

for $\precsim$ to be compatible with $\circ$.

$\Box$


The result follows.

$\blacksquare$