Prime-Generating Quadratics of form 2 a squared plus p

From ProofWiki
Jump to navigation Jump to search

Theorem

The quadratic form:

$2 a^2 + p$

yields prime numbers for $a = 0, 1, \ldots, p - 1$ for values of $p$:

$3, 5, 11, 29$


Proof

3

\(\ds 2 \times 0^2 + 3\) \(=\) \(\ds 0 + 3\)
\(\ds \) \(=\) \(\ds 3\) which is prime
\(\ds 2 \times 1^2 + 3\) \(=\) \(\ds 2 + 3\)
\(\ds \) \(=\) \(\ds 5\) which is prime
\(\ds 2 \times 2^2 + 3\) \(=\) \(\ds 2 \times 4 + 3\)
\(\ds \) \(=\) \(\ds 8 + 3\)
\(\ds \) \(=\) \(\ds 11\) which is prime


5

\(\ds 2 \times 0^2 + 5\) \(=\) \(\ds 0 + 5\)
\(\ds \) \(=\) \(\ds 5\) which is prime
\(\ds 2 \times 1^2 + 5\) \(=\) \(\ds 2 + 5\)
\(\ds \) \(=\) \(\ds 7\) which is prime
\(\ds 2 \times 2^2 + 5\) \(=\) \(\ds 2 \times 4 + 5\)
\(\ds \) \(=\) \(\ds 8 + 5\)
\(\ds \) \(=\) \(\ds 13\) which is prime
\(\ds 2 \times 3^2 + 5\) \(=\) \(\ds 2 \times 9 + 5\)
\(\ds \) \(=\) \(\ds 18 + 5\)
\(\ds \) \(=\) \(\ds 23\) which is prime
\(\ds 2 \times 4^2 + 5\) \(=\) \(\ds 2 \times 16 + 5\)
\(\ds \) \(=\) \(\ds 32 + 5\)
\(\ds \) \(=\) \(\ds 37\) which is prime


11

\(\ds 2 \times 0^2 + 11\) \(=\) \(\ds 0 + 11\)
\(\ds \) \(=\) \(\ds 11\) which is prime
\(\ds 2 \times 1^2 + 11\) \(=\) \(\ds 2 + 11\)
\(\ds \) \(=\) \(\ds 13\) which is prime
\(\ds 2 \times 2^2 + 11\) \(=\) \(\ds 2 \times 4 + 11\)
\(\ds \) \(=\) \(\ds 8 + 11\)
\(\ds \) \(=\) \(\ds 19\) which is prime
\(\ds 2 \times 3^2 + 11\) \(=\) \(\ds 2 \times 9 + 11\)
\(\ds \) \(=\) \(\ds 18 + 11\)
\(\ds \) \(=\) \(\ds 29\) which is prime
\(\ds 2 \times 4^2 + 11\) \(=\) \(\ds 2 \times 16 + 11\)
\(\ds \) \(=\) \(\ds 32 + 11\)
\(\ds \) \(=\) \(\ds 43\) which is prime
\(\ds 2 \times 5^2 + 11\) \(=\) \(\ds 2 \times 25 + 11\)
\(\ds \) \(=\) \(\ds 50 + 11\)
\(\ds \) \(=\) \(\ds 61\) which is prime
\(\ds 2 \times 6^2 + 11\) \(=\) \(\ds 2 \times 36 + 11\)
\(\ds \) \(=\) \(\ds 72 + 11\)
\(\ds \) \(=\) \(\ds 83\) which is prime
\(\ds 2 \times 7^2 + 11\) \(=\) \(\ds 2 \times 49 + 11\)
\(\ds \) \(=\) \(\ds 98 + 11\)
\(\ds \) \(=\) \(\ds 109\) which is prime
\(\ds 2 \times 8^2 + 11\) \(=\) \(\ds 2 \times 64 + 11\)
\(\ds \) \(=\) \(\ds 128 + 11\)
\(\ds \) \(=\) \(\ds 139\) which is prime
\(\ds 2 \times 9^2 + 11\) \(=\) \(\ds 2 \times 81 + 11\)
\(\ds \) \(=\) \(\ds 162 + 11\)
\(\ds \) \(=\) \(\ds 173\) which is prime
\(\ds 2 \times 10^2 + 11\) \(=\) \(\ds 2 \times 100 + 11\)
\(\ds \) \(=\) \(\ds 200 + 11\)
\(\ds \) \(=\) \(\ds 211\) which is prime


29

\(\ds 2 \times 0^2 + 29\) \(=\) \(\ds 0 + 29\)
\(\ds \) \(=\) \(\ds 29\) which is prime
\(\ds 2 \times 1^2 + 29\) \(=\) \(\ds 2 + 29\)
\(\ds \) \(=\) \(\ds 31\) which is prime
\(\ds 2 \times 2^2 + 29\) \(=\) \(\ds 2 \times 4 + 29\)
\(\ds \) \(=\) \(\ds 8 + 29\)
\(\ds \) \(=\) \(\ds 37\) which is prime
\(\ds 2 \times 3^2 + 29\) \(=\) \(\ds 2 \times 9 + 29\)
\(\ds \) \(=\) \(\ds 18 + 29\)
\(\ds \) \(=\) \(\ds 47\) which is prime
\(\ds 2 \times 4^2 + 29\) \(=\) \(\ds 2 \times 16 + 29\)
\(\ds \) \(=\) \(\ds 32 + 29\)
\(\ds \) \(=\) \(\ds 61\) which is prime
\(\ds 2 \times 5^2 + 29\) \(=\) \(\ds 2 \times 25 + 29\)
\(\ds \) \(=\) \(\ds 50 + 29\)
\(\ds \) \(=\) \(\ds 79\) which is prime
\(\ds 2 \times 6^2 + 29\) \(=\) \(\ds 2 \times 36 + 29\)
\(\ds \) \(=\) \(\ds 72 + 29\)
\(\ds \) \(=\) \(\ds 101\) which is prime
\(\ds 2 \times 7^2 + 29\) \(=\) \(\ds 2 \times 49 + 29\)
\(\ds \) \(=\) \(\ds 98 + 29\)
\(\ds \) \(=\) \(\ds 127\) which is prime
\(\ds 2 \times 8^2 + 29\) \(=\) \(\ds 2 \times 64 + 29\)
\(\ds \) \(=\) \(\ds 128 + 29\)
\(\ds \) \(=\) \(\ds 157\) which is prime
\(\ds 2 \times 9^2 + 29\) \(=\) \(\ds 2 \times 81 + 29\)
\(\ds \) \(=\) \(\ds 162 + 29\)
\(\ds \) \(=\) \(\ds 191\) which is prime
\(\ds 2 \times 10^2 + 29\) \(=\) \(\ds 2 \times 100 + 29\)
\(\ds \) \(=\) \(\ds 200 + 29\)
\(\ds \) \(=\) \(\ds 229\) which is prime
\(\ds 2 \times 11^2 + 29\) \(=\) \(\ds 2 \times 121 + 29\)
\(\ds \) \(=\) \(\ds 242 + 29\)
\(\ds \) \(=\) \(\ds 271\) which is prime
\(\ds 2 \times 12^2 + 29\) \(=\) \(\ds 2 \times 144 + 29\)
\(\ds \) \(=\) \(\ds 288 + 29\)
\(\ds \) \(=\) \(\ds 317\) which is prime
\(\ds 2 \times 13^2 + 29\) \(=\) \(\ds 2 \times 169 + 29\)
\(\ds \) \(=\) \(\ds 338 + 29\)
\(\ds \) \(=\) \(\ds 367\) which is prime
\(\ds 2 \times 14^2 + 29\) \(=\) \(\ds 2 \times 196 + 29\)
\(\ds \) \(=\) \(\ds 392 + 29\)
\(\ds \) \(=\) \(\ds 421\) which is prime
\(\ds 2 \times 15^2 + 29\) \(=\) \(\ds 2 \times 225 + 29\)
\(\ds \) \(=\) \(\ds 450 + 29\)
\(\ds \) \(=\) \(\ds 479\) which is prime
\(\ds 2 \times 16^2 + 29\) \(=\) \(\ds 2 \times 256 + 29\)
\(\ds \) \(=\) \(\ds 512 + 29\)
\(\ds \) \(=\) \(\ds 541\) which is prime
\(\ds 2 \times 17^2 + 29\) \(=\) \(\ds 2 \times 289 + 29\)
\(\ds \) \(=\) \(\ds 578 + 29\)
\(\ds \) \(=\) \(\ds 607\) which is prime
\(\ds 2 \times 18^2 + 29\) \(=\) \(\ds 2 \times 324 + 29\)
\(\ds \) \(=\) \(\ds 648 + 29\)
\(\ds \) \(=\) \(\ds 677\) which is prime
\(\ds 2 \times 19^2 + 29\) \(=\) \(\ds 2 \times 361 + 29\)
\(\ds \) \(=\) \(\ds 722 + 29\)
\(\ds \) \(=\) \(\ds 751\) which is prime
\(\ds 2 \times 20^2 + 29\) \(=\) \(\ds 2 \times 400 + 29\)
\(\ds \) \(=\) \(\ds 800 + 29\)
\(\ds \) \(=\) \(\ds 829\) which is prime
\(\ds 2 \times 21^2 + 29\) \(=\) \(\ds 2 \times 441 + 29\)
\(\ds \) \(=\) \(\ds 882 + 29\)
\(\ds \) \(=\) \(\ds 911\) which is prime
\(\ds 2 \times 22^2 + 29\) \(=\) \(\ds 2 \times 484 + 29\)
\(\ds \) \(=\) \(\ds 968 + 29\)
\(\ds \) \(=\) \(\ds 997\) which is prime
\(\ds 2 \times 23^2 + 29\) \(=\) \(\ds 2 \times 529 + 29\)
\(\ds \) \(=\) \(\ds 1058 + 29\)
\(\ds \) \(=\) \(\ds 1087\) which is prime
\(\ds 2 \times 24^2 + 29\) \(=\) \(\ds 2 \times 576 + 29\)
\(\ds \) \(=\) \(\ds 1152 + 29\)
\(\ds \) \(=\) \(\ds 1181\) which is prime
\(\ds 2 \times 25^2 + 29\) \(=\) \(\ds 2 \times 625 + 29\)
\(\ds \) \(=\) \(\ds 1250 + 29\)
\(\ds \) \(=\) \(\ds 1279\) which is prime
\(\ds 2 \times 26^2 + 29\) \(=\) \(\ds 2 \times 676 + 29\)
\(\ds \) \(=\) \(\ds 1352 + 29\)
\(\ds \) \(=\) \(\ds 1381\) which is prime
\(\ds 2 \times 27^2 + 29\) \(=\) \(\ds 2 \times 729 + 29\)
\(\ds \) \(=\) \(\ds 1458 + 29\)
\(\ds \) \(=\) \(\ds 1487\) which is prime
\(\ds 2 \times 28^2 + 29\) \(=\) \(\ds 2 \times 784 + 29\)
\(\ds \) \(=\) \(\ds 1568 + 29\)
\(\ds \) \(=\) \(\ds 1597\) which is prime


When $x = p$ we have:

\(\ds 2 p^2 + p\) \(=\) \(\ds p \left({2 p + 1}\right)\)

which has divisors $p$ and $2 p + 1$ and so is not prime.

$\blacksquare$


Sources