Prime-Generating Quadratics of form 2 a squared plus p/11

From ProofWiki
Jump to navigation Jump to search

Theorem

The quadratic form:

$2 a^2 + 11$

yields prime numbers for $a = 0, 1, \ldots, 10$.


Proof

\(\ds 2 \times 0^2 + 11\) \(=\) \(\ds 0 + 11\)
\(\ds \) \(=\) \(\ds 11\) which is prime
\(\ds 2 \times 1^2 + 11\) \(=\) \(\ds 2 + 11\)
\(\ds \) \(=\) \(\ds 13\) which is prime
\(\ds 2 \times 2^2 + 11\) \(=\) \(\ds 2 \times 4 + 11\)
\(\ds \) \(=\) \(\ds 8 + 11\)
\(\ds \) \(=\) \(\ds 19\) which is prime
\(\ds 2 \times 3^2 + 11\) \(=\) \(\ds 2 \times 9 + 11\)
\(\ds \) \(=\) \(\ds 18 + 11\)
\(\ds \) \(=\) \(\ds 29\) which is prime
\(\ds 2 \times 4^2 + 11\) \(=\) \(\ds 2 \times 16 + 11\)
\(\ds \) \(=\) \(\ds 32 + 11\)
\(\ds \) \(=\) \(\ds 43\) which is prime
\(\ds 2 \times 5^2 + 11\) \(=\) \(\ds 2 \times 25 + 11\)
\(\ds \) \(=\) \(\ds 50 + 11\)
\(\ds \) \(=\) \(\ds 61\) which is prime
\(\ds 2 \times 6^2 + 11\) \(=\) \(\ds 2 \times 36 + 11\)
\(\ds \) \(=\) \(\ds 72 + 11\)
\(\ds \) \(=\) \(\ds 83\) which is prime
\(\ds 2 \times 7^2 + 11\) \(=\) \(\ds 2 \times 49 + 11\)
\(\ds \) \(=\) \(\ds 98 + 11\)
\(\ds \) \(=\) \(\ds 109\) which is prime
\(\ds 2 \times 8^2 + 11\) \(=\) \(\ds 2 \times 64 + 11\)
\(\ds \) \(=\) \(\ds 128 + 11\)
\(\ds \) \(=\) \(\ds 139\) which is prime
\(\ds 2 \times 9^2 + 11\) \(=\) \(\ds 2 \times 81 + 11\)
\(\ds \) \(=\) \(\ds 162 + 11\)
\(\ds \) \(=\) \(\ds 173\) which is prime
\(\ds 2 \times 10^2 + 11\) \(=\) \(\ds 2 \times 100 + 11\)
\(\ds \) \(=\) \(\ds 200 + 11\)
\(\ds \) \(=\) \(\ds 211\) which is prime

$\blacksquare$