Prime Decomposition of 5th Fermat Number/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

The prime decomposition of the $5$th Fermat number is given by:

\(\ds 2^{\paren {2^5} } + 1\) \(=\) \(\ds 4 \, 294 \, 967 \, 297\) Sequence of Fermat Numbers
\(\ds \) \(=\) \(\ds 641 \times 6 \, 700 \, 417\)
\(\ds \) \(=\) \(\ds \paren {5 \times 2^7 + 1} \times \paren {3 \times 17449 \times 2^7 + 1}\)


Proof

Note the remarkable coincidence that $2^4 + 5^4 = 2^7 \cdot 5 + 1 = 641$.


First we eliminate $y$ from $x^4 + y^4 = x^7 y + 1 = 0$:

\(\ds x^4 + y^4\) \(=\) \(\ds x^7 y + 1 = 0\)
\(\ds \leadsto \ \ \) \(\ds -x^4\) \(=\) \(\ds y^4\)
\(\ds \leadsto \ \ \) \(\ds x^{28} \paren {-x^4} + 1\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x^{32}\) \(=\) \(\ds -1\)


Now we use the above result for $x = 2$ and $y = 4$ in modulo $641$:

\(\ds 2^4 + 5^4\) \(\equiv\) \(\ds 0\) \(\ds \pmod {641}\)
\(\ds 2^7 \cdot 5\) \(\equiv\) \(\ds -1\) \(\ds \pmod {641}\)
\(\ds \leadsto \ \ \) \(\ds 2^{28} \paren {-2^4}\) \(\equiv\) \(\ds -1\) \(\ds \pmod {641}\)
\(\ds \leadsto \ \ \) \(\ds 2^{32}\) \(\equiv\) \(\ds -1\) \(\ds \pmod {641}\)
\(\ds \leadsto \ \ \) \(\ds 2^{32} + 1\) \(\equiv\) \(\ds 0\) \(\ds \pmod {641}\)


Thus $2^{\paren {2^5} } + 1 = 6 \, 700 \, 417 \times 641$ and hence is not prime.

$\blacksquare$