Prime Factors of 13 Factorial

From ProofWiki
Jump to navigation Jump to search

Example of Factorial

The prime decomposition of $13!$ is given as:

$13! = 2^{10} \times 3^5 \times 5^2 \times 7 \times 11 \times 13$


Proof

For each prime factor $p$ of $13!$, let $a_p$ be the integer such that:

$p^{a_p} \divides 13!$
$p^{a_p + 1} \nmid 13!$


Taking the prime factors in turn:

\(\ds a_2\) \(=\) \(\ds \sum_{k \mathop > 0} \floor {\frac {13} {2^k} }\) De Polignac's Formula
\(\ds \) \(=\) \(\ds \floor {\frac {13} 2} + \floor {\frac {13} 4} + \floor {\frac {13} 8}\)
\(\ds \) \(=\) \(\ds 6 + 3 + 1\)
\(\ds \) \(=\) \(\ds 10\)


\(\ds a_3\) \(=\) \(\ds \sum_{k \mathop > 0} \floor {\frac {13} {3^k} }\) De Polignac's Formula
\(\ds \) \(=\) \(\ds \floor {\frac {13} 3} + \floor {\frac {13} 9}\)
\(\ds \) \(=\) \(\ds 4 + 1\)
\(\ds \) \(=\) \(\ds 5\)


\(\ds a_5\) \(=\) \(\ds \sum_{k \mathop > 0} \floor {\frac {13} {5^k} }\) De Polignac's Formula
\(\ds \) \(=\) \(\ds \floor {\frac {13} 5}\)
\(\ds \) \(=\) \(\ds 2\)


\(\ds a_7\) \(=\) \(\ds \sum_{k \mathop > 0} \floor {\frac {13} {7^k} }\) De Polignac's Formula
\(\ds \) \(=\) \(\ds \floor {\frac {13} 7}\)
\(\ds \) \(=\) \(\ds 1\)


Similarly:

$a_{11} = 1$
$a_{13} = 1$

Hence the result.

$\blacksquare$