Prime Power of Sum Modulo Prime
Jump to navigation
Jump to search
Theorem
Let $p$ be a prime number.
Then:
- $\forall n \in \N_{> 0}: \paren {a + b}^{p^n} \equiv a^{p^n} + b^{p^n} \pmod p$
Corollary
Let $p$ be a prime number.
Then:
- $\forall n \in \N_{> 0}: \paren {1 + b}^{p^n} \equiv 1 + b^{p^n} \pmod p$
Proof
Proof by induction:
For all $n \in \N_{> 0}$, let $\map P n$ be the proposition:
- $\paren {a + b}^{p^n} \equiv a^{p^n} + b^{p^n} \pmod p$
Basis for the Induction
First from Power of Sum Modulo Prime we have that $\map P 1$ is true:
- $\paren {a + b}^p \equiv a^p + b^p \pmod p$
This is our basis for the induction.
Induction Hypothesis
Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.
So this is our induction hypothesis:
- $\paren {a + b}^{p^k} \equiv a^{p^k} + b^{p^k} \pmod p$
Then we need to show:
- $\paren {a + b}^{p^{k + 1} } \equiv a^{p^{k + 1} } + b^{p^{k + 1} } \pmod p$
Induction Step
This is our induction step:
\(\ds \paren {a + b}^{p^k}\) | \(\equiv\) | \(\ds a^{p^k} + b^{p^k}\) | \(\ds \pmod p\) | Induction Hypothesis | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\paren {a + b}^{p^k} }^p\) | \(\equiv\) | \(\ds \paren {a^{p^k} + b^{p^k} }^p\) | \(\ds \pmod p\) | Congruence of Powers | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\paren {a + b}^{p^k} }^p\) | \(\equiv\) | \(\ds \paren {a^{p^k} }^p + \paren {b^{p^k} }^p\) | \(\ds \pmod p\) | Basis for the Induction | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {a + b}^{p^{k + 1} }\) | \(\equiv\) | \(\ds a^{p^{k + 1} } + b^{p^{k + 1} }\) | \(\ds \pmod p\) |
So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\forall n \in \N_{> 0}: \paren {a + b}^{p^n} \equiv a^{p^n} + b^{p^n} \pmod p$
$\blacksquare$