Primitive of Arccosine of x over a/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \arccos \frac x a \rd x = x \arccos \frac x a - \sqrt {a^2 - x^2} + C$


Proof

Let:

\(\ds u\) \(=\) \(\ds \arccos \frac x a\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \cos u\) \(=\) \(\ds \frac x a\) Definition of Real Arccosine
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \cos u\) \(=\) \(\ds \sqrt {1 - \frac {x^2} {a^2} }\) Sum of Squares of Sine and Cosine


Then:

\(\ds \int \arccos \frac x a \rd x\) \(=\) \(\ds -a \int u \sin u \rd u\) Primitive of Function of Arccosine
\(\ds \) \(=\) \(\ds -a \paren {\sin u - u \cos u} + C\) Primitive of $x \sin a x$
\(\ds \) \(=\) \(\ds -a \paren {\sin u - u \frac x a} + C\) Substitution for $\cos u$ from $(1)$
\(\ds \) \(=\) \(\ds -a \paren {\sqrt {1 - \frac {x^2} {a^2} } - u \frac x a} + C\) Substitution for $\sin u$ from $(2)$
\(\ds \) \(=\) \(\ds -a \paren {\sqrt {1 - \frac {x^2} {a^2} } - \frac x a \arccos \frac x a} + C\) Substitution for $u$
\(\ds \) \(=\) \(\ds x \arccos \frac x a - \sqrt {a^2 - x^2} + C\) simplifying

$\blacksquare$