Primitive of Arccotangent of x over a/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \arccot \frac x a \rd x = x \arccot \frac x a + \frac a 2 \map \ln {x^2 + a^2} + C$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \arccot \frac x a\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac {-a} {x^2 + a^2}\) Derivative of $\arccot \dfrac x a$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds x\) Primitive of Constant


Then:

\(\ds \int \arccot \frac x a \rd x\) \(=\) \(\ds x \arccot \frac x a - \int x \paren {\frac {-a} {x^2 + a^2} } \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds x \arccot \frac x a + a \int \frac {x \rd x} {x^2 + a^2} + C\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds x \arccot \frac x a + a \paren {\frac 1 2 \map \ln {x^2 + a^2} } + C\) Primitive of $\dfrac x {x^2 + a^2}$
\(\ds \) \(=\) \(\ds x \arccot \frac x a + \frac a 2 \map \ln {x^2 + a^2} + C\) simplifying

$\blacksquare$