Primitive of Arcsine Function
Jump to navigation
Jump to search
Theorem
- $\ds \int \arcsin x \rd x = x \arcsin x + \sqrt {1 - x^2} + C$
Corollary
- $\ds \int \arcsin \frac x a \rd x = x \arcsin \frac x a + \sqrt {a^2 - x^2} + C$
Proof 1
Let:
\(\ds u\) | \(=\) | \(\ds \arcsin x\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \sin u\) | \(=\) | \(\ds x\) | Definition of Real Arcsine | |||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \cos u\) | \(=\) | \(\ds \sqrt {1 - x^2}\) | Sum of Squares of Sine and Cosine |
Then:
\(\ds \int \arcsin x \rd x\) | \(=\) | \(\ds \int u \cos u \rd u\) | Primitive of Function of Arcsine | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos u + u \sin u + C\) | Primitive of $x \cos a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos u + u x + C\) | Substitution for $\sin u$ from $\paren 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {1 - x^2} + u x + C\) | Substitution for $\cos u$ from $\paren 2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsin x + \sqrt {1 - x^2} + C\) | Substitution for $u$ and rearranging |
$\blacksquare$
Proof 2
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \arcsin x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 {\sqrt {1 - x^2} }\) | Derivative of $\arcsin x$ |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds x\) | Primitive of Constant |
Then:
\(\ds \int \arcsin x \rd x\) | \(=\) | \(\ds x \arcsin x - \int x \paren {\frac 1 {\sqrt {1 - x^2} } } \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsin x - \int \frac {x \rd x} {\sqrt {1 - x^2} } + C\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsin x - \paren {-\sqrt {1 - x^2} } + C\) | Primitive of $\dfrac x {\sqrt {a^2 - x^2} }$, with $a := 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsin x + \sqrt {1 - x^2} + C\) | simplifying |
$\blacksquare$
Also see
Sources
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $6$. Integral Calculus: Appendix: Table of Fundamental Standard Integrals
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals