Primitive of Arctangent of x over a/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \arctan \frac x a \rd x = x \arctan \frac x a - \frac a 2 \map \ln {x^2 + a^2} + C$


Proof

Let:

\(\ds u\) \(=\) \(\ds \arctan \frac x a\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \tan u\) \(=\) \(\ds \frac x a\) Definition of Real Arctangent
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \sec u\) \(=\) \(\ds \sqrt {1 + \frac {x^2} {a^2} }\) Difference of Squares of Secant and Tangent


Then:

\(\ds \int \arctan \frac x a \rd x\) \(=\) \(\ds a \int u \sec^2 u \rd u\) Primitive of Function of Arctangent
\(\ds \) \(=\) \(\ds a \paren {u \tan u + \ln \size {\cos u} } + C\) Primitive of $x \sec^2 a x$ with $a = 1$
\(\ds \) \(=\) \(\ds a u \tan u - a \ln \size {\sec u} + C\) Logarithm of Reciprocal and Secant is Reciprocal of Cosine
\(\ds \) \(=\) \(\ds a u \frac x a - a \ln \size {\sec u} + C\) Substitution for $\tan u$ from $\paren 1$
\(\ds \) \(=\) \(\ds a u \frac x a - a \ln \size {\sqrt {1 + \frac {x^2} {a^2} } } + C\) Substitution for $\sec u$ from $\paren 2$
\(\ds \) \(=\) \(\ds x \arctan \frac x a - a \ln \size {\sqrt {1 + \frac {x^2} {a^2} } } + C\) Substitution for $u$
\(\ds \) \(=\) \(\ds x \arctan \frac x a - \frac a 2 \ln \size {\frac {x^2 + a^2 } {a^2} } + C\) Logarithm of Power and simplifying
\(\ds \) \(=\) \(\ds x \arctan \frac x a - \frac a 2 \ln \size {x^2 + a^2} - \ln \size {a^2} + C\) Difference of Logarithms
\(\ds \) \(=\) \(\ds x \arctan \frac x a - \frac a 2 \ln \size {x^2 + a^2} + C\) subsuming $\ln \size {a^2}$ into arbitrary constant
\(\ds \) \(=\) \(\ds x \arctan \frac x a - \frac a 2 \map \ln {x^2 + a^2} + C\) $x^2 + a^2$ always positive

$\blacksquare$