Primitive of Cosecant of a x over x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\csc a x} x \rd x = \frac {-1} {a x} + \frac {a x} 6 + \frac {7 \paren {a x}^3} {1080} + \cdots + \frac {\paren {-1}^{n - 1} 2 \paren {2^{2 n - 1} - 1} B_{2 n} \paren {a x}^{2 n - 1} } {\paren {2 n - 1} \paren {2 n}!} + \cdots + C$

where $B_n$ is the $n$th Bernoulli number.


Proof

\(\ds \int \frac {\csc a x} x \rd x\) \(=\) \(\ds \int \frac 1 x \sum_{n \mathop = 0}^\infty \frac {\paren {-1}^{n - 1} 2 \paren {2^{2 n - 1} - 1} B_{2 n} \paren {a x}^{2 n - 1} } {\paren {2 n}!} \rd x\) Power Series Expansion for Cosecant Function
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {-1}^{n - 1} 2 \paren {2^{2 n - 1} - 1} B_{2 n} a^{2 n - 1} } {\paren {2 n}!} \int x^{2 n - 2} \rd x\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {-1}^{n - 1} 2 \paren {2^{2 n - 1} - 1} B_{2 n} a^{2 n - 1} } {\paren {2 n}!} \paren {\frac {x^{2 n - 1} } {2 n - 1} } + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {-1}^{n - 1} 2 \paren {2^{2 n - 1} - 1} B_{2 n} \paren {a x}^{2 n - 1} } {\paren {2 n - 1} \paren {2 n}!} + C\)

$\blacksquare$


Also see


Sources