Primitive of Cosine of a x over Power of p plus q of Sine of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\cos a x \rd x} {\paren {p + q \sin a x}^n} = \frac {-1} {a q \paren {n - 1} \paren {p + q \sin a x}^{n - 1} } + C$


Proof

\(\ds z\) \(=\) \(\ds p + q \sin a x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d z} {\d x}\) \(=\) \(\ds a q \sin a x\) Derivative of $\sin a x$
\(\ds \leadsto \ \ \) \(\ds \int \frac {\cos a x \rd x} {\paren {p + q \sin a x}^n}\) \(=\) \(\ds \int \frac {\d z} {a q z^n}\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac 1 {a q} \int z^{-n} \rd z\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \frac 1 {a q} \frac {z^{-n + 1} } {-n + 1} + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac {-1} {a q \paren {n - 1} z^{n - 1} } + C\) simplifying
\(\ds \) \(=\) \(\ds \frac {-1} {a q \paren {n - 1} \paren {p + q \sin a x}^{n - 1} } + C\) substituting for $z$

$\blacksquare$


Also see


Sources