Primitive of Cube of Hyperbolic Cotangent of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \coth^3 a x \rd x = \frac {\ln \size {\sinh a x} } a - \frac {\coth^2 a x} {2 a} + C$


Proof 1

\(\ds \int \coth^3 a x \rd x\) \(=\) \(\ds \int \coth a x \coth^2 a x \rd x\)
\(\ds \) \(=\) \(\ds \int \coth a x \paren {1 + \csch^2 a x} \rd x\) Difference of Squares of Hyperbolic Cotangent and Cosecant
\(\ds \) \(=\) \(\ds \int \coth a x \rd x + \int \coth a x \csch^2 a x \rd x\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac {\ln \size {\sinh a x} } a + \int \coth a x \csch^2 a x \rd x\) Primitive of $\tanh a x$
\(\ds \) \(=\) \(\ds \frac {\ln \size {\sinh a x} } a - \frac {\coth^2 a x} {2 a} + C\) Primitive of $\coth^n a x \csch^2 a x$: $n = 1$

$\blacksquare$


Proof 2

\(\ds \int \coth^3 a x \rd x\) \(=\) \(\ds -\frac {\coth^2 a x} {2 a} + \int \coth a x \rd x\) Primitive of Power of $\coth^n a x$ with $n = 3$
\(\ds \) \(=\) \(\ds \frac {\ln \size {\sinh a x} } a - \frac {\coth^2 a x} {2 a} + C\) Primitive of $\coth a x$

$\blacksquare$


Also see


Sources