Primitive of Exponential of a x by Cosine of b x/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int e^{a x} \cos b x \rd x = \frac {e^{a x} \paren {a \cos b x + b \sin b x} } {a^2 + b^2} + C$


Proof

\(\ds \int e^{a x} e^{i b x} \rd x\) \(=\) \(\ds i \int e^{a x} \sin b x \rd x + \int e^{a x} \cos b x \rd x\) Euler's Formula
\(\ds \leadsto \ \ \) \(\ds \int e^{a x} \cos b x \rd x\) \(=\) \(\ds \map \Re {\int e^{\paren {a + i b} x} \rd x}\)
\(\ds \) \(=\) \(\ds \map \Re {\frac {e^{\paren {a + i b} x} } {a + i b} } + C\) Primitive of Exponential of a x
\(\ds \) \(=\) \(\ds \map \Re {\frac {\paren {a - i b} e^{\paren {a + i b} x} } {a^2 + b^2} } + C\) multiplying through by $\dfrac {a - i b} {a - i b}$
\(\ds \) \(=\) \(\ds \map \Re {\frac {i a e^{a x} \sin b x + a e^{a x} \cos b x - i b \paren {i e^{a x} \sin b x + e^{a x} \cos b x} } {a^2 + b^2} } + C\) Euler's Formula
\(\ds \) \(=\) \(\ds \map \Re {\frac {i \paren {a e^{a x} \sin b x - b e^{a x} \cos b x} + \paren {a e^{a x} \cos b x + b e^{a x} \sin b x} } { a^2 + b^2} } + C\)
\(\ds \) \(=\) \(\ds \frac {e^{a x} \paren {a \cos b x + b \sin b x} } {a^2 + b^2} + C\) isolating real part

$\blacksquare$