Primitive of Hyperbolic Sine of a x by Hyperbolic Cosine of a x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \sinh a x \cosh a x \rd x = \frac {\sinh^2 a x} {2 a} + C$


Proof

\(\ds \int \sinh a x \cosh a x \rd x\) \(=\) \(\ds \int \frac {\sinh 2 a x} 2 \rd x\) Double Angle Formula for Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac 1 2 \int \sinh 2 a x \rd x\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\frac {\cosh 2 a x} {2 a} } + C\) Primitive of $\sinh a x$
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\frac {1 + 2 \sinh^2 a x} {2 a} } + C\) Double Angle Formula for Hyperbolic Cosine: Corollary $2$
\(\ds \) \(=\) \(\ds \frac {\sinh^2 a x} {2 a} + \frac 1 {4 a} + C\) simplifying
\(\ds \) \(=\) \(\ds \frac {\sinh^2 a x} {2 a} + C\) subsuming $\dfrac 1 {4 a}$ into arbitrary constant

$\blacksquare$