Primitive of Inverse Hyperbolic Cosecant of x over a
Jump to navigation
Jump to search
Theorem
- $\ds \int \arcsch \frac x a \rd x = \begin {cases} x \arcsch \dfrac x a + a \arsinh \dfrac x a + C & : x > 0 \\ x \arcsch \dfrac x a - a \arsinh \dfrac x a + C & : x < 0 \end {cases}$
Proof
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \arcsch \frac x a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac {-a} {\size x \sqrt {a^2 + x^2} }\) | Derivative of $\arcsch \dfrac x a$ |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds x\) | Primitive of Constant |
Then:
\(\ds \int \arcsch \frac x a \rd x\) | \(=\) | \(\ds x \arcsch \frac x a - \int x \paren {\frac {-a} {\size x \sqrt {a^2 + x^2} } } \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsch \frac x a + a \int \frac {x \rd x} {\size x \sqrt {a^2 + x^2} } + C\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsch \frac x a \begin {cases} \mathop + a \ds \int \dfrac {\d x} {\sqrt {a^2 + x^2} } + C & : x > 0 \\ \mathop - a \ds \int \dfrac {\d x} {\sqrt {a^2 + x^2} } + C & : x < 0 \end {cases}\) | Definition of Absolute Value | |||||||||||
\(\ds \) | \(=\) | \(\ds \begin {cases} x \arcsch \dfrac x a + a \arsinh \dfrac x a + C & : x > 0 \\ x \arcsch \dfrac x a - a \arsinh \dfrac x a + C & : x < 0 \end {cases}\) | Primitive of $\dfrac 1 {\sqrt {a^2 + x^2} }$ |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving Inverse Hyperbolic Functions: $14.669$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Inverse hyperbolic functions