Primitive of Inverse Hyperbolic Cosine of x over a/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int -\cosh^{-1} \frac x a \rd x = x \paren {-\cosh^{-1} \dfrac x a} + \sqrt {x^2 - a^2} + C$

where $-\cosh^{-1}$ denotes the negative branch of the real inverse hyperbolic cosine multifunction.


Proof

\(\ds -\cosh^{-1} \frac x a\) \(=\) \(\ds -\arcosh \frac x a\) Definition of Real Inverse Hyperbolic Cosine
\(\ds \leadsto \ \ \) \(\ds \int -\cosh^{-1} \frac x a \rd x\) \(=\) \(\ds -\int \arcosh \frac x a \rd x\)
\(\ds \) \(=\) \(\ds -\paren {x \arcosh \dfrac x a - \sqrt {x^2 - a^2} + C}\) Primitive of $\arcosh \dfrac x a$
\(\ds \) \(=\) \(\ds \paren {-\cosh^{-1} \dfrac x a} + \sqrt {x^2 - a^2} + C\) Definition of Real Inverse Hyperbolic Cosine

$\blacksquare$


Sources