Primitive of Inverse Hyperbolic Cosine of x over a over x/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \int \dfrac 1 x \paren {-\cosh^{-1} \dfrac x a} \rd x\) \(=\) \(\ds -\dfrac 1 2 \ln^2 \paren {\dfrac {2 x} a} - \sum_{n \mathop \ge 1} \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n}^2} \paren {\frac a x}^{2 n} + C\)
\(\ds \) \(=\) \(\ds -\dfrac 1 2 \ln^2 \paren {\dfrac {2 x} a} - \dfrac 1 {2 \times 2^2} \paren {\dfrac a x}^2 - \dfrac {1 \times 3} {2 \times 4 \times 4^2} \paren {\dfrac a x}^4 - \dfrac {1 \times 3 \times 5} {2 \times 4 \times 6 \times 6^2} \paren {\dfrac a x}^6 + \dotsb + C\)

where $-\cosh^{-1}$ denotes the negative branch of the real inverse hyperbolic cosine multifunction.


Proof

\(\ds -\cosh^{-1} \frac x a\) \(=\) \(\ds -\arcosh \frac x a\) Definition of Real Inverse Hyperbolic Cosine
\(\ds \leadsto \ \ \) \(\ds \int \dfrac 1 x \paren {-\cosh^{-1} \dfrac x a} \rd x\) \(=\) \(\ds -\int \dfrac 1 x \arcosh \dfrac x a \rd x\)
\(\ds \) \(=\) \(\ds -\paren {\dfrac 1 2 \ln^2 \paren {\dfrac {2 x} a} + \sum_{n \mathop \ge 1} \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n}^2} \paren {\frac a x}^{2 n} + C}\) Primitive of $\arcosh \dfrac x a$
\(\ds \) \(=\) \(\ds -\dfrac 1 2 \ln^2 \paren {\dfrac {2 x} a} - \sum_{n \mathop \ge 1} \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n}^2} \paren {\frac a x}^{2 n} + C\)

$\blacksquare$


Sources