Primitive of Inverse Hyperbolic Cotangent of x over a over x squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac 1 {x^2} \arcoth \dfrac x a \rd x = -\frac 1 x \arcoth \dfrac x a + \frac 1 {2 a} \map \ln {\frac {x^2} {x^2 - a^2} } + C$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \arcoth \frac x a\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac {-a} {x^2 - a^2}\) Derivative of $\arcoth \dfrac x a$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds \frac 1 {x^2}\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {-1} x\) Primitive of Power


Then:

\(\ds \int \frac {\arcoth \dfrac x a \rd x} {x^2}\) \(=\) \(\ds \paren {\arcoth \frac x a} \paren {\frac {-1} x} - \int \paren {\frac {-1} x} \paren {\frac {-a} {x^2 - a^2} } \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds -\frac 1 x \arcoth \dfrac x a - a \int \frac {\d x} {x \paren {x^2 - a^2} } + C\) simplifying
\(\ds \) \(=\) \(\ds -\frac 1 x \arcoth \dfrac x a - a \paren {\frac 1 {2 a^2} \map \ln {\frac {x^2 - a^2} {x^2} } } + C\) Primitive of $\dfrac 1 {x \paren {x^2 - a^2} }$
\(\ds \) \(=\) \(\ds -\frac 1 x \arcoth \dfrac x a - \frac 1 {2 a} \map \ln {\frac {x^2 - a^2} {x^2} } + C\) simplifying
\(\ds \) \(=\) \(\ds -\frac 1 x \arcoth \dfrac x a + \frac 1 {2 a} \map \ln {\frac {x^2} {x^2 - a^2} } + C\) Logarithm of Reciprocal

$\blacksquare$


Also see


Sources