Primitive of Pointwise Sum of Functions

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f_1, f_2, \ldots, f_n$ be real functions which are integrable.

Then:

$\ds \int \map {\paren {f_1 \pm f_2 \pm \, \cdots \pm f_n} } x \rd x = \int \map {f_1} x \rd x \pm \int \map {f_2} x \rd x \pm \, \cdots \pm \int \map {f_n} x \rd x$


Proof 1

Proof by induction:

For all $n \in \N_{> 0}$, let $\map P n$ be the proposition:

$\ds \int \map {\paren {f_1 \pm f_2 \pm \, \cdots \pm f_n} } x \rd x = \int \map {f_1} x \rd x \pm \int \map {f_2} x \rd x \pm \, \cdots \pm \int \map {f_n} x \rd x$


$\map P 1$ is true, as this just says:

$\ds \int \map {f_1} x \rd x = \int \map {f_1} x \rd x$


Basis for the Induction

$\map P 2$ is the case:

\(\ds \int \map {\paren {f_1 \pm f_2} } x \rd x\) \(=\) \(\ds \int \paren {\map {f_1} x \pm \map {f_2} x} \rd x\) Definition of Pointwise Addition of Real-Valued Functions
\(\ds \) \(=\) \(\ds \int \map {f_1} x \rd x \pm \map {f_2} x \rd x\) Linear Combination of Primitives

This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 2$, then it logically follows that $\map P {k + 1}$ is true.


So this is our induction hypothesis:

$\ds \int \map {\paren {f_1 \pm f_2 \pm \, \cdots \pm f_k} } x \rd x = \int \map {f_1} x \rd x \pm \int \map {f_2} x \rd x \pm \, \cdots \pm \int \map {f_k} x \rd x$


Then we need to show:

$\ds \int \map {\paren {f_1 \pm f_2 \pm \, \cdots \pm f_{k + 1} } } x \rd x = \int \map {f_1} x \rd x \pm \int \map {f_2} x \rd x \pm \, \cdots \pm \int \map {f_{k + 1} } x \rd x$


Induction Step

This is our induction step:


\(\ds \) \(\) \(\ds \int \map {\paren {f_1 \pm f_2 \pm \, \cdots \pm f_{k + 1} } } x \rd x\)
\(\ds \) \(=\) \(\ds \int \paren {\map {\paren {f_1 \pm f_2 \pm \, \cdots \pm f_k} } x + \map {f_{k + 1} } x} \rd x\) Definition of Pointwise Addition of Real-Valued Functions
\(\ds \) \(=\) \(\ds \int \map {\paren {f_1 \pm f_2 \pm \, \cdots \pm f_k} } x \rd x + \int \map {f_{k + 1} } x \rd x\) Basis for the Induction
\(\ds \) \(=\) \(\ds \int \map {f_1} x \rd x \pm \int \map {f_2} x \rd x \pm \, \cdots \pm \int \map {f_k} x \rd x + \int \map {f_{k + 1} } x \rd x\) Induction Hypothesis

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\forall n \in \N: \ds \int \map {\paren {f_1 \pm f_2 \pm \, \cdots \pm f_n} } x \rd x = \int \map {f_1} x \rd x \pm \int \map {f_2} x \rd x \pm \, \cdots \pm \int \map {f_n} x \rd x$

$\blacksquare$


Proof 2

From Sum Rule for Derivatives:

$\ds \map {\dfrac \d {\d x} } {\sum_{i \mathop = 1}^n \map {f_i} x} = \sum_{i \mathop = 1}^n \map {\dfrac \d {\d x} } {\map {f_i} x}$


The result follows by definition of primitive.

$\blacksquare$


Examples

Primitive of $f + g$

Let $f$ and $g$ be real functions of $x$ which are integrable.

Then:

$\ds \int \paren {\map f x + \map g x} \rd x = \int \map f x \rd x + \int \map g x \rd x$


Primitive of $u + v + w$

Let $u$, $v$ and $w$ be real functions of $x$ which are integrable.

Then:

$\ds \int \paren {u + v + w} \rd x = \int u \rd x + \int v \rd x + \int w \rd x$


Primitive of $u + v - w$

Let $u$, $v$ and $w$ be real functions of $x$ which are integrable.

Then:

$\ds \int \paren {u + v - w} \rd x = \int u \rd x + \int v \rd x - \int w \rd x$


Sources