Primitive of Power of Cotangent of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int \cot^n a x \rd x = \frac {-\cot^{n - 1} a x} {\paren {n - 1} a} - \int \cot^{n - 2} a x \rd x$
for $n \ne 1$.
Proof
\(\ds \int \cot^n a x \rd x\) | \(=\) | \(\ds \int \cot^{n - 2} a x \cot^2 a x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \cot^{n - 2} a x \paren {\csc^2 a x - 1} \rd x\) | Difference of Squares of Cosecant and Cotangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \cot^{n - 2} a x \csc^2 a x \rd x - \int \cot^{n - 2} \rd x\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-\cot^{n - 1} a x} {\paren {n - 1} a} - \int \cot^{n - 2} \rd x\) | Primitive of $\cot^n a x \csc^2 a x$ |
$\blacksquare$
Also see
- Primitive of $\cot a x$ for $n = 1$
- Primitive of $\sin^n a x$
- Primitive of $\cos^n a x$
- Primitive of $\tan^n a x$
- Primitive of $\sec^n a x$
- Primitive of $\csc^n a x$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\cot a x$: $14.450$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Back endpapers: A Brief Table of Integrals: $87$.
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(21)$ Integrals Involving $\cot a x$: $17.21.11.$