Primitive of Power of Hyperbolic Tangent of a x by Square of Hyperbolic Secant of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \tanh^n a x \sech^2 a x \rd x = \frac {\tanh^{n + 1} a x} {\paren {n + 1} a} + C$


Proof

\(\ds z\) \(=\) \(\ds \tanh a x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d z} {\d x}\) \(=\) \(\ds a \sech^2 a x\) Derivative of $\tanh a x$
\(\ds \leadsto \ \ \) \(\ds \int \tanh^n a x \sech^2 a x \rd x\) \(=\) \(\ds \int \frac 1 a z^n \rd z\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac 1 a \frac {z^{n + 1} } {n + 1}\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac {\tanh^{n + 1} a x} {\paren {n + 1} a} + C\) substituting for $z$ and simplifying

$\blacksquare$


Also see


Sources