Primitive of Power of Sine of a x by Power of Cosine of a x
Jump to navigation
Jump to search
Theorem
Reduction of Power of Sine
- $\ds \int \sin^m a x \cos^n a x \rd x = \frac {-\sin^{m - 1} a x \cos^{n + 1} a x} {a \paren {m + n} } + \frac {m - 1} {m + n} \int \sin^{m - 2} a x \cos^n a x \rd x + C$
Reduction of Power of Cosine
- $\displaystyle \int \sin^m a x \cos^n a x \rd x = \frac {\sin^{m + 1} a x \cos^{n - 1} a x} {a \paren {m + n} } + \frac {n - 1} {m + n} \int \sin^m a x \cos^{n - 2} a x \rd x + C$