Primitive of Power of a x + b over Power of p x + q

From ProofWiki
Jump to navigation Jump to search

Theorem

Formulation 1

$\ds \int \frac {\paren {a x + b}^m} {\paren {p x + q}^n} \rd x = \frac {-1} {\paren {n - 1} \paren {b p - a q} } \paren {\frac {\paren {a x + b}^{m + 1} } {\paren {p x + q}^{n - 1} } + \paren {n - m - 2} a \int \frac {\paren {a x + b}^m} {\paren {p x + q}^{n - 1} } \rd x}$


Formulation 2

$\ds \int \frac {\paren {a x + b}^m} {\paren {p x + q}^n} \rd x = \frac {-1} {\paren {n - m - 1} p} \paren {\frac {\paren {a x + b}^m} {\paren {p x + q}^{n - 1} } + m \paren {b p - a q} \int \frac {\paren {a x + b}^{m - 1} } {\paren {p x + q}^n} \rd x}$


Formulation 3

$\ds \int \frac {\paren {a x + b}^m} {\paren {p x + q}^n} \rd x = \frac {-1} {\paren {n - 1} p} \paren {\frac {\paren {a x + b}^m} {\paren {p x + q}^{n - 1} } - m a \int \frac {\paren {a x + b}^{m - 1} } {\paren {p x + q}^{n - 1}} \rd x}$