Primitive of Power of x by Inverse Hyperbolic Cosecant of x over a
Jump to navigation
Jump to search
Theorem
- $\ds \int x^m \arcsch \frac x a \rd x = \begin{cases} \ds \frac {x^{m + 1} } {m + 1} \arcsch \frac x a + \frac 1 {m + 1} \int \frac {x^m} {\sqrt {x^2 + a^2} } \rd x + C & : x > 0 \\ \ds \frac {x^{m + 1} } {m + 1} \arcsch \frac x a - \frac 1 {m + 1} \int \frac {x^m} {\sqrt {x^2 + a^2} } \rd x + C & : x < 0 \\ \end{cases}$
Proof
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\rd v} {\rd x} \rd x = u v - \int v \frac {\rd u} {\rd x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \arcsch \frac x a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\rd u} {\rd x}\) | \(=\) | \(\ds \frac {-a} {\size x \sqrt{a^2 + x^2} }\) | Derivative of $\arcsch \dfrac x a$ |
and let:
\(\ds \frac {\rd v} {\rd x}\) | \(=\) | \(\ds x^m\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {x^{m + 1} } {m + 1}\) | Primitive of Power |
Then:
\(\ds \int \frac {\arcsch \dfrac x a \rd x} {x^2}\) | \(=\) | \(\ds \paren {\arcsch \frac x a} \paren {\frac {x^{m + 1} } {m + 1} } - \int \paren {\frac {x^{m + 1} } {m + 1} } \paren {\frac {-a} {\size x \sqrt{a^2 + x^2} } } \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \begin {cases} \ds \frac {x^{m + 1} } {m + 1} \arcsch \frac x a + \frac 1 {m + 1} \int \frac {x^m} {\sqrt {x^2 + a^2} } \rd x + C & : x > 0 \\ \ds \frac {x^{m + 1} } {m + 1} \arcsch \frac x a - \frac 1 {m + 1} \int \frac {x^m} {\sqrt {x^2 + a^2} } \rd x + C & : x < 0 \\ \end {cases}\) | Definition of Absolute Value |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving Inverse Hyperbolic Functions: $14.677$