Primitive of Power of x by Sine of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^m \sin a x \rd x = \frac {-x^m \cos a x} a + \frac {m x^{m - 1} \sin a x} {a^2} - \frac {m \paren {m - 1} } {a^2} \int x^{m - 2} \sin a x \rd x$


Proof

Lemma

$\ds \int x^m \sin a x \rd x = \frac {- x^m \cos a x} a + \frac m a \int x^{m - 1} \cos a x \rd x$

$\Box$


From Primitive of $x^{m - 1} \cos a x$: Lemma:

$(1): \quad \ds \int x^{m - 1} \cos a x \rd x = \frac {x^{m - 1} \sin a x} a - \frac {m - 1} a \int x^{m - 2} \sin a x \rd x$


So:

\(\ds \int x^m \sin a x \rd x\) \(=\) \(\ds \frac {- x^m \cos a x} a + \frac m a \int x^{m - 1} \cos a x \rd x\) Lemma
\(\ds \) \(=\) \(\ds \frac {- x^m \cos a x} a + \frac m a \paren {\frac {x^{m - 1} \sin a x} a - \frac {m - 1} a \int x^{m - 2} \sin a x \rd x}\) from $(1)$
\(\ds \) \(=\) \(\ds \frac {- x^m \cos a x} a + \frac {m x^{m - 1} \sin a x} {a^2} - \frac {m \paren {m - 1} } {a^2} \int x^{m - 2} \sin a x \rd x\) simplifying

$\blacksquare$


Also see


Sources