Primitive of Power of x over a x squared plus b x plus c

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \R_{\ne 0}$.

Then:

$\ds \int \frac {x^m \rd x} {a x^2 + b x + c} = \frac {x^{m - 1} } {\paren {m - 1} a} - \frac b a \int \frac {x^{m - 1} \rd x} {a x^2 + b x + c} - \frac c a \int \frac {x^{m - 2} \rd x} {a x^2 + b x + c}$


Proof

\(\ds \int \frac {x^m \rd x} {a x^2 + b x + c}\) \(=\) \(\ds \int \frac 1 a \frac {a x^m \rd x} {a x^2 + b x + c}\)
\(\ds \) \(=\) \(\ds \frac 1 a \int \frac {x^{m - 2} a x^2 \rd x} {a x^2 + b x + c}\)
\(\ds \) \(=\) \(\ds \frac 1 a \int \frac {x^{m - 2} \paren {a x^2 + b x + c - b x - c} \rd x} {a x^2 + b x + c}\)
\(\ds \) \(=\) \(\ds \frac 1 a \int \frac {x^{m - 2} \paren {a x^2 + b x + c} \rd x} {a x^2 + b x + c} - \frac b a \int \frac {x^{m - 2} x \rd x} {a x^2 + b x + c} - \frac c a \int \frac {x^{m - 2} \rd x} {a x^2 + b x + c}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 a \int x^{m - 2} \rd x - \frac b a \int \frac {x^{m - 1} \rd x} {a x^2 + b x + c} - \frac c a \int \frac {x^{m - 2} \rd x} {a x^2 + b x + c}\) simplification
\(\ds \) \(=\) \(\ds \frac {x^{m - 1} } {\paren {m - 1} a} - \frac b a \int \frac {x^{m - 1} \rd x} {a x^2 + b x + c} - \frac c a \int \frac {x^{m - 2} \rd x} {a x^2 + b x + c}\) Primitive of Power

$\blacksquare$


Sources