Primitive of Product of Cosecant and Cotangent
Jump to navigation
Jump to search
Theorem
- $\ds \int \csc x \cot x \rd x = -\csc x + C$
where $C$ is an arbitrary constant.
Proof
From Derivative of Cosecant Function:
- $\dfrac \d {\d x} \csc x = -\csc x \cot x$
The result follows from the definition of primitive.
$\blacksquare$
Sources
- 1945: A. Geary, H.V. Lowry and H.A. Hayden: Advanced Mathematics for Technical Students, Part I ... (previous) ... (next): Chapter $\text {III}$: Integration: Integration
- 1960: Margaret M. Gow: A Course in Pure Mathematics ... (previous) ... (next): Chapter $10$: Integration: $10.4$. Standard integrals: Other Standard Results: $\text {(xvi)}$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.24$
- 1972: Frank Ayres, Jr. and J.C. Ault: Theory and Problems of Differential and Integral Calculus (SI ed.) ... (previous) ... (next): Chapter $25$: Fundamental Integration Formulas: $17$.
- 1974: Murray R. Spiegel: Theory and Problems of Advanced Calculus (SI ed.) ... (previous) ... (next): Chapter $5$. Integrals: Integrals of Special Functions: $12$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: General Rules of Integration: $16.24.$