Primitive of Reciprocal of Hyperbolic Sine of a x by Hyperbolic Cosine of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\sinh a x \cosh a x} = \frac 1 a \ln \size {\tanh a x} + C$


Proof

\(\ds \int \frac {\d x} {\sinh a x \cosh a x}\) \(=\) \(\ds \int \frac {\sech a x \rd x} {\sinh a x}\) Definition 2 of Hyperbolic Secant
\(\ds \) \(=\) \(\ds \int \frac {\sech^2 a x \rd x} {\sinh a x \sech a x}\) multiplying top and bottom by $\sech a x$
\(\ds \) \(=\) \(\ds \int \frac {\sech^2 a x \rd x} {\frac {\sinh a x} {\cosh a x} }\) Definition 2 of Hyperbolic Secant
\(\ds \) \(=\) \(\ds \int \frac {\sech^2 a x \rd x} {\tanh a x}\) Definition 2 of Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \frac 1 a \ln \size {\tanh a x} + C\) Primitive of $\dfrac {\sech^2 a x} {\tanh a x}$

$\blacksquare$


Sources