Primitive of Reciprocal of Power of Hyperbolic Sine of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\sinh^n a x} = \frac {-\cosh a x} {a \paren {n - 1} \sinh^{n - 1} a x} - \frac {n - 2} {n - 1} \int \frac {\d x} {\sinh^{n - 2} a x}$

for $n \ne 1$.


Proof

\(\ds \int \frac {\d x} {\sinh^n a x}\) \(=\) \(\ds \int \csch^n a x \rd x\) Definition 2 of Hyperbolic Cosecant
\(\ds \) \(=\) \(\ds \frac {-\csch^{n - 2} a x \coth a x} {a \paren {n - 1} } - \frac {n - 2} {n - 1} \int \csch^{n - 2} a x \rd x\) Primitive of $\csch^n a x$
\(\ds \) \(=\) \(\ds \frac {-\coth a x} {a \paren {n - 1} \sinh^{n - 2} a x} - \frac {n - 2} {n - 1} \int \frac {\d x} {\sinh^{n - 2} a x}\) Definition 2 of Hyperbolic Cosecant
\(\ds \) \(=\) \(\ds \frac {-\cosh a x} {a \sinh a x \left({n - 1}\right) \sinh^{n - 2} a x} - \frac {n - 2} {n - 1} \int \frac {\d x} {\sinh^{n - 2} a x}\) Definition 2 of Hyperbolic Cotangent
\(\ds \) \(=\) \(\ds \frac {-\cosh a x} {a \paren {n - 1} \sinh^{n - 1} a x} - \frac {n - 2} {n - 1} \int \frac {\d x} {\sinh^{n - 2} a x}\) simplifying


We note that when $n = 1$, $\dfrac {n - 2} {n - 1}$ is undefined, rendering this derivation invalid.

$\blacksquare$


Also see


Sources