Primitive of Reciprocal of Power of a x + b by Power of p x + q

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\paren {a x + b}^m \paren {p x + q}^n} = \frac {-1} {\paren {n - 1} \paren {b p - a q} } \paren {\frac 1 {\paren {a x + b}^{m - 1} \paren {p x + q}^{n - 1} } + a \paren {m + n - 2} \int \frac {\d x} {\paren {a x + b}^m \paren {p x + q}^{n - 1} } }$


Proof

From Reduction Formula for Primitive of Power of $a x + b$ by Power of $p x + q$: Increment of Power:

$\ds \int \paren {a x + b}^m \paren {p x + q}^n \rd x = \frac 1 {\paren {n + 1} \paren {b p - a q} } \paren {\paren {a x + b}^{m + 1} \paren {p x + q}^{n + 1} - a \paren {m + n + 2} \int \paren {a x + b}^m \paren {p x + q}^{n + 1} \rd x}$


Setting $m := -m$ and $n := -n$:

\(\ds \) \(\) \(\ds \int \frac {\d x} {\paren {a x + b}^m \paren {p x + q}^n}\)
\(\ds \) \(=\) \(\ds \int \paren {a x + b}^{-m} \paren {p x + q}^{-n} \rd x\)
\(\ds \) \(=\) \(\ds \frac 1 {\paren {-n + 1} \paren {b p - a q} } \paren {\paren {a x + b}^{-m + 1} \paren {p x + q}^{-n + 1} - a \paren {-m - n + 2} \int \paren {a x + b}^{-m} \paren {p x + q}^{-n + 1} \rd x}\)
\(\ds \) \(=\) \(\ds \frac {-1} {\paren {n - 1} \paren {b p - a q} } \paren {\frac 1 {\paren {a x + b}^{m - 1} \paren {p x + q}^{n - 1} } + a \paren {m + n - 2} \int \frac {\d x} {\paren {a x + b}^m \paren {p x + q}^{n - 1} } }\)

$\blacksquare$


Sources