Primitive of Reciprocal of Power of x by Power of x squared plus a squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x^m \paren {x^2 + a^2}^n} = \frac 1 {a^2} \int \frac {\d x} {x^m \paren {x^2 + a^2}^{n - 1} } - \frac 1 {a^2} \int \frac {\d x} {x^{m - 2} \paren {x^2 + a^2}^n}$


Proof

\(\ds \int \frac {\d x} {x^m \paren {x^2 + a^2}^{n - 1} }\) \(=\) \(\ds \int \frac {\paren {x^2 + a^2} \rd x} {x^m \paren {x^2 + a^2}^{n - 1} \paren {x^2 + a^2} }\)
\(\ds \) \(=\) \(\ds \int \frac {\paren {x^2 + a^2} \rd x} {x^m \paren {x^2 + a^2}^{\left({n - 1}\right) + 1} }\)
\(\ds \) \(=\) \(\ds \int \frac {x^2 \rd x} {x^m \paren {x^2 + a^2}^n} + a^2 \int \frac {\d x} {x^m \paren {x^2 + a^2}^n}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \int \frac {\d x} {x^{m - 2} \paren {x^2 + a^2}^n} + a^2 \int \frac {\d x} {x^m \paren {x^2 + a^2}^n}\) simplifying
\(\ds \leadsto \ \ \) \(\ds a^2 \int \frac {\d x} {x^m \paren {x^2 + a^2}^n}\) \(=\) \(\ds \int \frac {\d x} {x^m \paren {x^2 + a^2}^{n - 1} } - \int \frac {\d x} {x^{m - 2} \paren {x^2 + a^2}^n}\) changing sides
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d x} {x^m \paren {x^2 + a^2}^n}\) \(=\) \(\ds \frac 1 {a^2} \int \frac {\d x} {x^m \paren {x^2 + a^2}^{n - 1} } - \frac 1 {a^2} \int \frac {\d x} {x^{m - 2} \paren {x^2 + a^2}^n}\)

$\blacksquare$


Sources