Primitive of Reciprocal of Root of a x squared plus b x plus c/a less than 0/Positive Discriminant

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \R_{<0}$.

Let $b^2 - 4 a c > 0$.


Then for $x \in \R$ such that $a x^2 + b x + c > 0$ and $\size {2 a x + b} < \sqrt {b^2 - 4 a c}$:

$\ds \int \frac {\d x} {\sqrt {a x^2 + b x + c} } = \frac {-1} {\sqrt {-a} } \map \arcsin {\frac {2 a x + b} {\sqrt {b^2 - 4 a c} } } + C$


Proof

Completing the Square

First:

\(\ds a x^2 + b x + c\) \(=\) \(\ds \frac {\paren {2 a x + b}^2 - \paren {b^2 - 4 a c} } {4 a}\) Completing the Square
\(\ds \) \(=\) \(\ds \frac {\paren {b^2 - 4 a c} - \paren {2 a x + b}^2} {4 \paren {-a} }\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \int \frac {\d x} {\sqrt {a x^2 + b x + c} }\) \(=\) \(\ds \int \frac {2 \sqrt {-a} \rd x} {\sqrt {\paren {b^2 - 4 a c} - \paren {2 a x + b}^2} }\)


Put:

\(\ds z\) \(=\) \(\ds 2 a x + b\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d z} {\d x}\) \(=\) \(\ds 2 a\) Derivative of Power


Let $D = b^2 - 4 a c$.

Thus:

\(\ds \int \frac {\d x} {\sqrt {a x^2 + b x + c} }\) \(=\) \(\ds \int \frac {2 \sqrt {-a} \rd x} {\sqrt {\paren {b^2 - 4 a c} - \paren {2 a x + b}^2} }\) from $(2)$
\(\ds \) \(=\) \(\ds \int \frac {2 \sqrt {-a} \rd z} {2 a \sqrt {D - z^2} }\) Integration by Substitution
\(\ds \) \(=\) \(\ds \int \frac {-\sqrt {-a} \rd z} {-a \sqrt {D - z^2} }\)
\(\ds \) \(=\) \(\ds \int \frac {-\d z} {\sqrt {-a} \sqrt {D - z^2} }\)
\(\ds \) \(=\) \(\ds \frac {-1} {\sqrt {-a} } \int \frac {\d z} {\sqrt {D - z^2} }\) Primitive of Constant Multiple of Function

$\Box$


Let $b^2 - 4 a c > 0$.

Then:

\(\ds D\) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds q^2\) for some $q \in \R$
\(\ds \leadsto \ \ \) \(\ds q\) \(=\) \(\ds \sqrt {b^2 - 4 a c}\) by definition of $D$


Thus:

\(\ds \int \frac {\d x} {\sqrt {a x^2 + b x + c} }\) \(=\) \(\ds \frac {-1} {\sqrt {-a} } \int \frac {\d z} {\sqrt {q^2 - z^2} }\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac {-1} {\sqrt {-a} } \arcsin \frac z q + C\) Primitive of $\dfrac 1 {\sqrt {a^2 - x^2} }$
\(\ds \) \(=\) \(\ds \frac {-1} {\sqrt {-a} } \map \arcsin {\frac {2 a x + b} {\sqrt {b^2 - 4 a c} } } + C\) substituting for $z$ and $q$

$\blacksquare$


Sources