Primitive of Reciprocal of Root of x squared minus a squared/Inverse Hyperbolic Cosine Form
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {\sqrt {x^2 - a^2} } = \dfrac {\size x} x \arcosh {\size {\frac x a} } + C$
for $x^2 > a^2$.
Proof
When $x = a$ we have that $\sqrt {x^2 - a^2} = 0$ and then $\dfrac 1 {\sqrt {x^2 - a^2} }$ is not defined.
When $\size x < a$ we have that $x^2 - a^2 < 0$ and then $\sqrt {x^2 - a^2}$ is not defined.
Hence the domain needs to be restricted to $\size x > a$, or that is: $\size {\dfrac x a} > 1$.
Let $x > a$.
Let:
\(\ds u\) | \(=\) | \(\ds \map \arcosh {\frac x a}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds a \cosh u\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d x} {\d u}\) | \(=\) | \(\ds a \sinh u\) | Derivative of Hyperbolic Cosine Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\d x} {\sqrt {x^2 - a^2} }\) | \(=\) | \(\ds \int \frac {a \sinh u} {\sqrt {a^2 \cosh^2 u - a^2} } \rd u\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac a a \int \frac {\sinh u} {\sqrt {\cosh^2 u - 1} } \rd u\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {\sinh u} {\sinh u} \rd u\) | Difference of Squares of Hyperbolic Cosine and Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \int 1 \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds u + C\) | Integral of Constant | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \arcosh {\frac x a} + C\) | Definition of $u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \arcosh \size {\frac x a} + C\) | as $\dfrac x a > 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\size x} x \arcosh \size {\frac x a} + C\) | as $x > 0$, so $\dfrac {\size x} x = 1$ |
Let $x < -a$.
Let $z = -x$.
Hence:
- $\dfrac {\d z} {\d x} = -1$
Then:
\(\ds \int \frac {\d x} {\sqrt {x^2 - a^2} }\) | \(=\) | \(\ds \int \frac {-\d z} {\sqrt {\paren {-z}^2 - a^2} }\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds -\int \frac {\d z} {\sqrt {z^2 - a^2} }\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds -\map \arcosh {\frac z a} + C\) | from above | |||||||||||
\(\ds \) | \(=\) | \(\ds -\map \arcosh {\frac {-x} a} + C\) | substituting back | |||||||||||
\(\ds \) | \(=\) | \(\ds -\arcosh \size {\frac x a} + C\) | as $\dfrac x a < 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\size x} x \arcosh \size {\frac x a} + C\) | as $x < 0$, so $\dfrac {\size x} x = -1$ |
$\blacksquare$
Also see
- Primitive of $\dfrac 1 {\sqrt {x^2 + a^2} }$: Inverse Hyperbolic Sine Form
- Primitive of $\dfrac 1 {\sqrt {a^2 - x^2} }$
Sources
- 1944: R.P. Gillespie: Integration (2nd ed.) ... (previous) ... (next): Chapter $\text {II}$: Integration of Elementary Functions: $\S 7$. Standard Integrals: $15$.
- who glosses over the details of what happens for negative $x$.
- 1960: Margaret M. Gow: A Course in Pure Mathematics ... (previous) ... (next): Chapter $10$: Integration: $10.4$. Standard integrals: Standard Forms: $\text {(xi)}$
- who does the same for negative $x$.
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $6$. Integral Calculus: Appendix: Table of Fundamental Standard Integrals
- who glosses over the details of what happens for negative $x$.
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- who covers positive $x$ only
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- who covers positive $x$ only
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $7$: Integrals
- who covers positive $x$ only
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $8$: Integrals
- who covers positive $x$ only