Primitive of Reciprocal of Root of x squared minus a squared/Logarithm Form/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {-\sqrt {x^2 - a^2} } = \ln \size {x - \sqrt {x^2 - a^2} } + C$

for $\size x > a$.


Proof

\(\ds \int \frac {\d x} {\sqrt {x^2 - a^2} }\) \(=\) \(\ds \ln \size {x + \sqrt {x^2 - a^2} } + C\) Primitive of $\dfrac 1 {\sqrt {x^2 - a^2} }$ in Logarithm Form
\(\ds \int \frac {\d x} {-\sqrt {x^2 + a^2} }\) \(=\) \(\ds -\ln \size {x + \sqrt {x^2 - a^2} } + C\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \ln \size {x - \sqrt {x^2 - a^2} } + C + \map \ln {a^2}\) Negative of Logarithm of x plus Root x squared minus a squared
\(\ds \) \(=\) \(\ds \ln \size {x - \sqrt {x^2 - a^2} } + C\) subsuming $\map \ln {a^2}$ into the constant

$\blacksquare$


Also see


Sources